

Experimental Details for the VT-NASA CFD Turbulence Model Blind Validation Challenge

Center for Research and Engineering in Aero/Hydrodynamic Technologies

K. T. Lowe, C. J. Roy, A. Borgoltz, W. J. Devenport, A. Grzyb, M. Shanmugam, A. Borole *Kevin T. Crofton Dept. of Aerospace and Ocean Engineering, Virginia Tech* A. Gargiulo *Dept. of Mechanical and Aerospace Engineering, University of Virginia*

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH

CENTER FOR RENEWABLE ENERGY AND AERO/HYDRODYNAMIC TECHNOLOGY

Team for Validation Challenge

Students: (Not shown: JoJo Chen and Derek Li)

Many thanks to NASA for support under NRA Grant Nos. 80NSSC18M0146 and 80NSSC22M0061, Program Monitors Michael Kegerise and Mujeeb Malik.

Also, thanks to our assessors, Drs. Bill Oberkampf and Mory Mani

Further kind acknowledgements to Daniel MacGregor and Philippe Lavoie at UTIAS.

Advait Borole

Agata Grzyb

Adwait Hoge-Patil

Monica Shanmugam

Aldo Gargiulo

Aurélien Borgoltz

Todd

Lowe

William Devenport

Chris Roy

Máté Szőke

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT AEROSPACE AND OCEAN ENGINEE VIRGINIA TECH.

BeVERLI addresses 3D, smooth wall separation and the separation of the separation of

- RANS and turbulence modeling workhorse in CFD
 - DNS and LES still expensive
 - CFD for high-impact decisions
- Benchmark Validation Experiments for RANS/LES Investigations (BeVERLI) hill case
 - CFD validation experiment at highest levels of completeness
 - Simple hill geometry encapsulating effects of 3D, non-equilibrium TBLs
 - Experiment and simulations

- NATO AVT-349
 - Members from academia, gov. and non-gov. labs, and industry around the globe
 - Advance accuracy and range of prediction models for high Reynolds number non-equilibrium TBLs

Gargiulo, A., Duetsch-Patel, J. E., Borgoltz, A., Devenport, W. J., Roy, C. J., & Lowe, K. T. (2023). Strategies for computational fluid dynamics validation experiments. Journal of Verification, Validation and Uncertainty Quantification, 8(3).

KEVIN T. CROFTON DEPARTMENT OF

AEROSPACE AND OCEAN ENGINEERING

Stability Wind Tunnel

- Test section 1.85×1.85×7.3 m
- Top flow speed 85 m/s, Re=5x10⁶/m
- Very low turbulence levels
- Interchangeable hard wall and acoustic test sections.
- Modular test section wall structure allows acoustic test section to also be configured as hard wall
- Serves research, education (including undergraduate courses), outreach
- Non-profit cost center

Freestream	Turbulence
Velocity U $_\infty$	Intensity
(m/s)	
12	0.016%
21	0.021%
30	0.024%
48	0.029%
57	0.031%

NATO AVT-349 Non-Equilibrium Turbulent Boundary Layers in High Reynolds Number Flow at Incompressible Conditions

ບື

- Success of gene expression programming for improving surface pressure performance
- Mesh sensitivity
- Need for geometrically asymmetric cases
- Non-uniqueness seems fundamental to three-dimensional separation

University of Melbourne (Richard Sandberg)

KEVIN T. CROFTON DEPARTMENT OF

AERO/HYDRODYNAMIC TECHNOLOGY

École Centrale de Nantes – CNRS (Michel Visonneau)

The BeVERLI Hill Geometry Produces a Wide Spectrum of Flow Physics

45° yaw case (streamlined case)

Reynolds number-dependent symmetry

Staady asymmetry

0° yaw case (bluff case)

• Asymmetric

 U_{∞}

- Unsteady/switching asymmetry
- Reduced skew
- The blind validation challenge focuses on an asymmetric yaw case, 30° orientation.

7

The Experiments Were an Integral Part of Undergraduate Student Labs

RESEARCH

Stability Wind Tunnel project seeks better data for aerodynamic models

Oct 31, 2023

~200 undergraduate students participated in the validation challenge experiments

Boundary and Reference Conditions Measurements

(a) -BL Rake, $Re_H = 250 \mathrm{k}$ CFD Cp_{ref} •-BL Rake, $Re_H = 325 \text{k}$ 0.08 CFD Cp_{rof} curve-fit ---BL Rake, $Re_H = 650$ k CFD Cp_{rof} curve-fit evaluated at experiment locs. 0.06 - PIV, $Re_H = 250k$ Experiment Cp_{ref} Experiment Cp_{ref} basis for offset \bullet - PIV, $Re_H = 325k$ Measured 1.93 m ^oressure Coefficient Cp_{ref} OFFSET Experiment Cp 0.04 ----PIV, $Re_H = 650$ k upstream from center of Hill 0.02 -0.02 0.8 0.6-0.04 \overline{U}_1/U_e -0.06 -2 0 2 -6 -4 Streamwise distance [m]

Hill-height-based Reynolds number	250k	650k
Reference Pressure Offset [Pa]	-2.97	-22.48
Mean shift in c_{Pref}	-0.0119	-0.0132

Re _H	250,000	650,000
$\delta_{0.95} ({\rm mm})$	43.0 ± 1.5	38.5 ± 1.3
δ^* (mm)	8.3 ± 0.2	6.8 ± 0.2
θ (mm)	6.1 ± 0.2	5.2 ± 0.2

 $\mathbf{5}$

 $\substack{X_2/\delta_{0.95}\\ c}$

1

0.4

Reference pressures measured 2.2275 m upstream of hill center: test section geometry effects

AERO/HYDRODYNAMIC TECHNOLOGY

9

6

Δ

Hill Measurements: Overview

CENTER FOR RENEWABLE ENERGY AND

AERO/HYDRODYNAMIC TECHNOLOGY

Centerline

nterspan

-

Hill Measurements: Overview

Surface Pressure

-0.5

Pressure and Oil Flow Viz

- 135 precision taps on Hill
- Pressure scanners:
 - Esterline 9816/98RK pressure scanners
 - DTC ESP 32HD with unsteady response

Kerosene/titanium oxide/oleic acid mixture

 Re_H =650k

Laser-Doppler Velocimetry

- Custom, fiber-optic, embedded LDV probe
- Measurement volume of 63 $\mu m \times$ 63 $\mu m \times 50 \mu m$
- Low Stokes number, 0.2-0.3 μm diameter smoke particles
- AUR Studio acquisition and processing software

See also: Duetsch-Patel, J. E. (2023). Structure and Turbulence of the Three-Dimensional Boundary Layer Flow over a Hill. Ph.D. Dissertation, Virginia Tech.

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH.

AERO/HYDRODYNAMIC TECHNOLOGY

ENERGY AND

CENTER FOR RENEWAB

Stereoscopic Particle-Image Velocimetry

- LaVision, 12.6 kHz high-speed stereoscopic PIV system
- Low Stokes number, 0.2-0.3 μm diameter smoke particles

Oil Film Interferometry

Uncertainty Quantification Approach

- A priori: How well do your instruments measure what you think you are measuring?
 - Propagation of instrumentation-driven uncertainties
- A posterior: How well did the experiments and measurements reflect the reported/intended boundary conditions?
 - Geometric symmetries
 - Replicate measurements
 - Leveraging multiple diagnostics

Gargiulo et al. **JVVUQ 2023**

Note: PIV uncertainty is still a work in progress, left off of plots coming up in next talk.

Wall Static Pressure

17

Wall Static Pressure

18

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Z (meters)

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING ER FOR RENEWABLE ENERGY AND AERO/HYDRODYNAMIC TECHNOLOGY 1.2 1.15

1.1

1.05

1

0.95

0.9

x, m

25

Z (meters)

$Re_{H} = 250k$

 $Re_{H} = 650k$

LDV Reynolds Stress Profiles: $Re_H = 250k$

LDV Reynolds Stress Profiles: $Re_H = 250k$

5 ×10⁻³ 4 3 $u_2' u_2' U_{ref}^2$ or ω Location 1 Location 2 X_3 Location 3 - Location 4 n 10^{-3} 10⁻² 10^{-4} x_2 (tunnel normal) (m)

LDV Reynolds Stress Profiles: $Re_H = 250k$

LDV Reynolds Stress Profiles: $Re_H = 250k$

1 ×10⁻³ 0.5 3 0 -0.5 $u_1^\prime u_2^\prime / U_{ref}^2$ -1.5 -2 Location 1 -2.5 Location 2 X_3 Location 3 -3 Location 4 -3.5 10^{-3} 10^{-4} 10^{-2} x_2 (tunnel normal) (m)

CENTER FOR RENEWABLE ENERGY AND

AERO/HYDRODYNAMIC TECHNOLOGY

OFI/LDV Wall shear comparisons

Wrap up

- Measurements were the culmination of several major wind tunnel entries focused on the BeVERLI Hill
- Results covered distinct regimes of interest on the Hill, providing a range of possible comparisons and model validation measures
- Moving forward, the data will be archived for further validation studies by the community

Thanks so much for the attention and all the engagement throughout the BeVERLI project.